Математический анализ Примеры

Этап 1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Производная по равна .
Этап 2.3
Заменим все вхождения на .
Этап 3
Возведем в степень .
Этап 4
Применим правило степени для объединения показателей.
Этап 5
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 5.1
Добавим и .
Этап 5.2
Поскольку является константой относительно , производная по равна .
Этап 5.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Умножим на .
Этап 5.4.2
Перенесем влево от .
Этап 6
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 6.1
Чтобы применить цепное правило, зададим как .
Этап 6.2
Производная по равна .
Этап 6.3
Заменим все вхождения на .
Этап 7
Возведем в степень .
Этап 8
Возведем в степень .
Этап 9
Применим правило степени для объединения показателей.
Этап 10
Добавим и .
Этап 11
Поскольку является константой относительно , производная по равна .
Этап 12
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 13
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 13.1
Умножим на .
Этап 13.2
Перенесем влево от .
Этап 13.3
Изменим порядок членов.