Математический анализ Примеры

Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Производная по равна .
Этап 1.3
Заменим все вхождения на .
Этап 2
Объединим и .
Этап 3
Умножим на обратную дробь, чтобы разделить на .
Этап 4
Умножим на .
Этап 5
Поскольку является константой относительно , производная по равна .
Этап 6
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 6.1
Умножим на .
Этап 6.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Сократим общий множитель.
Этап 6.2.2
Перепишем это выражение.
Этап 7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8
Умножим на .
Этап 9
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.1
Применим правило умножения к .
Этап 9.2
Возведем в степень .