Математический анализ Примеры

Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Производная по равна .
Этап 1.3
Заменим все вхождения на .
Этап 2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Умножим на .
Этап 2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4
Умножим на .
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Применим правило умножения к .
Этап 3.2
Применим правило умножения к .
Этап 3.3
Применим свойство дистрибутивности.
Этап 3.4
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Умножим на .
Этап 3.4.2
Возведем в степень .
Этап 3.4.3
Возведем в степень .
Этап 3.4.4
Объединим и .
Этап 3.4.5
Умножим на .
Этап 3.4.6
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 3.4.6.1
Вынесем множитель из .
Этап 3.4.6.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 3.4.6.2.1
Вынесем множитель из .
Этап 3.4.6.2.2
Сократим общий множитель.
Этап 3.4.6.2.3
Перепишем это выражение.
Этап 3.5
Изменим порядок членов.
Этап 3.6
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 3.6.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.6.2
Объединим и .
Этап 3.6.3
Объединим числители над общим знаменателем.
Этап 3.6.4
Умножим на .
Этап 3.7
Умножим числитель на величину, обратную знаменателю.
Этап 3.8
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.8.1
Объединим и .
Этап 3.8.2
Умножим на .