Математический анализ Примеры

Trovare la Derivata - d/dx arctan(x)+arctan(1/x)
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Производная по равна .
Этап 3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.1.2
Производная по равна .
Этап 3.1.3
Заменим все вхождения на .
Этап 3.2
Перепишем в виде .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Объединим и .
Этап 3.5
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Применим правило умножения к .
Этап 4.2
Применим свойство дистрибутивности.
Этап 4.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Умножим на .
Этап 4.3.2
Единица в любой степени равна единице.
Этап 4.3.3
Объединим и .
Этап 4.3.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.3.4.1
Сократим общий множитель.
Этап 4.3.4.2
Перепишем это выражение.
Этап 4.3.5
Изменим порядок членов.
Этап 4.3.6
Объединим числители над общим знаменателем.
Этап 4.3.7
Вычтем из .
Этап 4.4
Разделим на .