Математический анализ Примеры

Trovare la Derivata - d/dx f(x)=2+3 натуральный логарифм от 1/x
Этап 1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Поскольку является константой относительно , производная относительно равна .
Этап 2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Производная по равна .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Перепишем в виде .
Этап 2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.5
Умножим на обратную дробь, чтобы разделить на .
Этап 2.6
Умножим на .
Этап 2.7
Возведем в степень .
Этап 2.8
Применим правило степени для объединения показателей.
Этап 2.9
Вычтем из .
Этап 2.10
Умножим на .
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 3.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Объединим и .
Этап 3.2.2
Вынесем знак минуса перед дробью.
Этап 3.2.3
Вычтем из .