Введите задачу...
Математический анализ Примеры
Этап 1
По правилу суммы производная по имеет вид .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Производная по равна .
Этап 2.3
Объединим и .
Этап 3
Этап 3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.1.2
Производная по равна .
Этап 3.1.3
Заменим все вхождения на .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Объединим и .
Этап 3.4
Объединим и .
Этап 3.5
Сократим общий множитель и .
Этап 3.5.1
Вынесем множитель из .
Этап 3.5.2
Сократим общие множители.
Этап 3.5.2.1
Вынесем множитель из .
Этап 3.5.2.2
Сократим общий множитель.
Этап 3.5.2.3
Перепишем это выражение.
Этап 4
Этап 4.1
Поскольку является константой относительно , производная по равна .
Этап 4.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 5
Этап 5.1
Объединим числители над общим знаменателем.
Этап 5.2
Добавим и .