Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Поскольку является константой относительно , производная по равна .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Умножим на .
Этап 1.2
Подставим нижнее предельное значение вместо в .
Этап 1.3
Умножим на .
Этап 1.4
Подставим верхнее предельное значение вместо в .
Этап 1.5
Умножим на .
Этап 1.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 1.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 2
Объединим и .
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
С помощью запишем в виде .
Этап 5
По правилу степени интеграл по имеет вид .
Этап 6
Этап 6.1
Найдем значение в и в .
Этап 6.2
Упростим.
Этап 6.2.1
Перепишем в виде .
Этап 6.2.2
Применим правило степени и перемножим показатели, .
Этап 6.2.3
Сократим общий множитель .
Этап 6.2.3.1
Сократим общий множитель.
Этап 6.2.3.2
Перепишем это выражение.
Этап 6.2.4
Возведем в степень .
Этап 6.2.5
Объединим и .
Этап 6.2.6
Умножим на .
Этап 6.2.7
Сократим общий множитель и .
Этап 6.2.7.1
Вынесем множитель из .
Этап 6.2.7.2
Сократим общие множители.
Этап 6.2.7.2.1
Вынесем множитель из .
Этап 6.2.7.2.2
Сократим общий множитель.
Этап 6.2.7.2.3
Перепишем это выражение.
Этап 6.2.7.2.4
Разделим на .
Этап 6.2.8
Перепишем в виде .
Этап 6.2.9
Применим правило степени и перемножим показатели, .
Этап 6.2.10
Сократим общий множитель .
Этап 6.2.10.1
Сократим общий множитель.
Этап 6.2.10.2
Перепишем это выражение.
Этап 6.2.11
Возведение в любую положительную степень дает .
Этап 6.2.12
Умножим на .
Этап 6.2.13
Умножим на .
Этап 6.2.14
Добавим и .
Этап 6.2.15
Объединим и .
Этап 6.2.16
Сократим общий множитель и .
Этап 6.2.16.1
Вынесем множитель из .
Этап 6.2.16.2
Сократим общие множители.
Этап 6.2.16.2.1
Вынесем множитель из .
Этап 6.2.16.2.2
Сократим общий множитель.
Этап 6.2.16.2.3
Перепишем это выражение.
Этап 6.2.16.2.4
Разделим на .
Этап 7