Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде уравнения.
Этап 2
Поменяем переменные местами.
Этап 3
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Разделим каждый член на и упростим.
Этап 3.2.1
Разделим каждый член на .
Этап 3.2.2
Упростим левую часть.
Этап 3.2.2.1
Сократим общий множитель .
Этап 3.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.1.2
Разделим на .
Этап 3.3
Чтобы избавиться от знака корня в левой части уравнения, возведем обе части в степень .
Этап 3.4
Упростим каждую часть уравнения.
Этап 3.4.1
С помощью запишем в виде .
Этап 3.4.2
Упростим левую часть.
Этап 3.4.2.1
Упростим .
Этап 3.4.2.1.1
Перемножим экспоненты в .
Этап 3.4.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.4.2.1.1.2
Сократим общий множитель .
Этап 3.4.2.1.1.2.1
Сократим общий множитель.
Этап 3.4.2.1.1.2.2
Перепишем это выражение.
Этап 3.4.2.1.2
Упростим.
Этап 3.4.3
Упростим правую часть.
Этап 3.4.3.1
Упростим .
Этап 3.4.3.1.1
Применим правило умножения к .
Этап 3.4.3.1.2
Возведем в степень .
Этап 3.5
Решим относительно .
Этап 3.5.1
Добавим к обеим частям уравнения.
Этап 3.5.2
Разделим каждый член на и упростим.
Этап 3.5.2.1
Разделим каждый член на .
Этап 3.5.2.2
Упростим левую часть.
Этап 3.5.2.2.1
Сократим общий множитель .
Этап 3.5.2.2.1.1
Сократим общий множитель.
Этап 3.5.2.2.1.2
Разделим на .
Этап 3.5.2.3
Упростим правую часть.
Этап 3.5.2.3.1
Упростим каждый член.
Этап 3.5.2.3.1.1
Умножим числитель на величину, обратную знаменателю.
Этап 3.5.2.3.1.2
Объединим.
Этап 3.5.2.3.1.3
Умножим на .
Этап 3.5.2.3.1.4
Умножим на .
Этап 4
Replace with to show the final answer.
Этап 5
Этап 5.1
Чтобы подтвердить обратную, проверим выполнение условий и .
Этап 5.2
Найдем значение .
Этап 5.2.1
Представим результирующую суперпозицию функций.
Этап 5.2.2
Найдем значение , подставив значение в .
Этап 5.2.3
Упростим каждый член.
Этап 5.2.3.1
Упростим числитель.
Этап 5.2.3.1.1
Применим правило умножения к .
Этап 5.2.3.1.2
Возведем в степень .
Этап 5.2.3.1.3
Перепишем в виде .
Этап 5.2.3.1.3.1
С помощью запишем в виде .
Этап 5.2.3.1.3.2
Применим правило степени и перемножим показатели, .
Этап 5.2.3.1.3.3
Объединим и .
Этап 5.2.3.1.3.4
Сократим общий множитель .
Этап 5.2.3.1.3.4.1
Сократим общий множитель.
Этап 5.2.3.1.3.4.2
Перепишем это выражение.
Этап 5.2.3.1.3.5
Упростим.
Этап 5.2.3.2
Сократим общие множители.
Этап 5.2.3.2.1
Вынесем множитель из .
Этап 5.2.3.2.2
Сократим общий множитель.
Этап 5.2.3.2.3
Перепишем это выражение.
Этап 5.2.4
Упростим члены.
Этап 5.2.4.1
Объединим числители над общим знаменателем.
Этап 5.2.4.2
Объединим противоположные члены в .
Этап 5.2.4.2.1
Добавим и .
Этап 5.2.4.2.2
Добавим и .
Этап 5.2.4.3
Сократим общий множитель .
Этап 5.2.4.3.1
Сократим общий множитель.
Этап 5.2.4.3.2
Разделим на .
Этап 5.3
Найдем значение .
Этап 5.3.1
Представим результирующую суперпозицию функций.
Этап 5.3.2
Найдем значение , подставив значение в .
Этап 5.3.3
Применим свойство дистрибутивности.
Этап 5.3.4
Сократим общий множитель .
Этап 5.3.4.1
Вынесем множитель из .
Этап 5.3.4.2
Сократим общий множитель.
Этап 5.3.4.3
Перепишем это выражение.
Этап 5.3.5
Сократим общий множитель .
Этап 5.3.5.1
Сократим общий множитель.
Этап 5.3.5.2
Перепишем это выражение.
Этап 5.3.6
Упростим выражение.
Этап 5.3.6.1
Вычтем из .
Этап 5.3.6.2
Добавим и .
Этап 5.3.6.3
Перепишем в виде .
Этап 5.3.7
Перепишем в виде .
Этап 5.3.8
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 5.3.9
Сократим общий множитель .
Этап 5.3.9.1
Сократим общий множитель.
Этап 5.3.9.2
Перепишем это выражение.
Этап 5.4
Так как и , то — обратная к .