Математический анализ Примеры

Trovare la Derivata - d/d@VAR f(x)=e^(-3/(x^2))
Этап 1
Вынесем знак минуса перед дробью.
Этап 2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.3
Заменим все вхождения на .
Этап 3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Перепишем в виде .
Этап 3.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Применим правило степени и перемножим показатели, .
Этап 3.2.2.2
Умножим на .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Умножим на .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Объединим и .
Этап 4.2.2
Объединим и .
Этап 4.2.3
Перенесем влево от .