Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Поскольку является константой относительно , производная относительно равна .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Перепишем в виде .
Этап 2.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.3.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Заменим все вхождения на .
Этап 2.4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.4.1
Чтобы применить цепное правило, зададим как .
Этап 2.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4.3
Заменим все вхождения на .
Этап 2.5
По правилу суммы производная по имеет вид .
Этап 2.6
Поскольку является константой относительно , производная по равна .
Этап 2.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.8
Поскольку является константой относительно , производная относительно равна .
Этап 2.9
Перемножим экспоненты в .
Этап 2.9.1
Применим правило степени и перемножим показатели, .
Этап 2.9.2
Умножим на .
Этап 2.10
Умножим на .
Этап 2.11
Добавим и .
Этап 2.12
Умножим на .
Этап 2.13
Умножим на .
Этап 2.14
Возведем в степень .
Этап 2.15
Применим правило степени для объединения показателей.
Этап 2.16
Вычтем из .
Этап 2.17
Объединим и .
Этап 2.18
Умножим на .
Этап 2.19
Объединим и .
Этап 2.20
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 2.21
Вынесем знак минуса перед дробью.
Этап 3
Вычтем из .