Математический анализ Примеры

Вычислить интеграл (e^(-2x)+1)^3
Этап 1
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1
Воспользуемся бином Ньютона.
Этап 1.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Применим правило степени и перемножим показатели, .
Этап 1.2.1.2
Умножим на .
Этап 1.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Применим правило степени и перемножим показатели, .
Этап 1.2.2.2
Умножим на .
Этап 1.2.3
Умножим на .
Этап 1.2.4
Единица в любой степени равна единице.
Этап 1.2.5
Умножим на .
Этап 1.2.6
Единица в любой степени равна единице.
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Дифференцируем .
Этап 3.1.2
Поскольку является константой относительно , производная по равна .
Этап 3.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.4
Умножим на .
Этап 3.2
Переформулируем задачу с помощью и .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Вынесем знак минуса перед дробью.
Этап 4.2
Объединим и .
Этап 5
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Интеграл по имеет вид .
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 9.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 9.1.1
Дифференцируем .
Этап 9.1.2
Поскольку является константой относительно , производная по равна .
Этап 9.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 9.1.4
Умножим на .
Этап 9.2
Переформулируем задачу с помощью и .
Этап 10
Упростим.
Нажмите для увеличения количества этапов...
Этап 10.1
Вынесем знак минуса перед дробью.
Этап 10.2
Объединим и .
Этап 11
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 12
Умножим на .
Этап 13
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 14
Упростим.
Нажмите для увеличения количества этапов...
Этап 14.1
Объединим и .
Этап 14.2
Вынесем знак минуса перед дробью.
Этап 15
Интеграл по имеет вид .
Этап 16
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 17
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 17.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 17.1.1
Дифференцируем .
Этап 17.1.2
Поскольку является константой относительно , производная по равна .
Этап 17.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 17.1.4
Умножим на .
Этап 17.2
Переформулируем задачу с помощью и .
Этап 18
Упростим.
Нажмите для увеличения количества этапов...
Этап 18.1
Вынесем знак минуса перед дробью.
Этап 18.2
Объединим и .
Этап 19
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 20
Умножим на .
Этап 21
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 22
Упростим.
Нажмите для увеличения количества этапов...
Этап 22.1
Объединим и .
Этап 22.2
Вынесем знак минуса перед дробью.
Этап 23
Интеграл по имеет вид .
Этап 24
Применим правило дифференцирования постоянных функций.
Этап 25
Упростим.
Этап 26
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Нажмите для увеличения количества этапов...
Этап 26.1
Заменим все вхождения на .
Этап 26.2
Заменим все вхождения на .
Этап 26.3
Заменим все вхождения на .