Математический анализ Примеры

Trovare dy/dx y=-1/( корень четвертой степени из x)
Этап 1
С помощью запишем в виде .
Этап 2
Продифференцируем обе части уравнения.
Этап 3
Производная по равна .
Этап 4
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 4.2
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Перепишем в виде .
Этап 4.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Применим правило степени и перемножим показатели, .
Этап 4.2.2.2
Объединим и .
Этап 4.2.2.3
Вынесем знак минуса перед дробью.
Этап 4.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.4
Объединим и .
Этап 4.5
Объединим числители над общим знаменателем.
Этап 4.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.6.1
Умножим на .
Этап 4.6.2
Вычтем из .
Этап 4.7
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 4.7.1
Вынесем знак минуса перед дробью.
Этап 4.7.2
Объединим и .
Этап 4.7.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.7.3.1
Умножим на .
Этап 4.7.3.2
Умножим на .
Этап 4.7.3.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 4.8
Поскольку является константой относительно , производная относительно равна .
Этап 4.9
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.9.1
Умножим на .
Этап 4.9.2
Добавим и .
Этап 5
Преобразуем уравнение, приравняв левую часть к правой.
Этап 6
Заменим на .