Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Этап 2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Производная по равна .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.4
Перепишем в виде .
Этап 2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.6
Умножим на .
Этап 2.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.8
Умножим на .
Этап 2.9
Упростим.
Этап 2.9.1
Применим свойство дистрибутивности.
Этап 2.9.2
Применим свойство дистрибутивности.
Этап 2.9.3
Объединим термины.
Этап 2.9.3.1
Возведем в степень .
Этап 2.9.3.2
Возведем в степень .
Этап 2.9.3.3
Применим правило степени для объединения показателей.
Этап 2.9.3.4
Добавим и .
Этап 2.9.4
Изменим порядок членов.
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Перепишем в виде .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Этап 5.1
Упростим левую часть.
Этап 5.1.1
Изменим порядок множителей в .
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 5.3
Перенесем все члены без в правую часть уравнения.
Этап 5.3.1
Добавим к обеим частям уравнения.
Этап 5.3.2
Вычтем из обеих частей уравнения.
Этап 5.4
Вынесем множитель из .
Этап 5.4.1
Вынесем множитель из .
Этап 5.4.2
Вынесем множитель из .
Этап 5.4.3
Вынесем множитель из .
Этап 5.5
Разделим каждый член на и упростим.
Этап 5.5.1
Разделим каждый член на .
Этап 5.5.2
Упростим левую часть.
Этап 5.5.2.1
Сократим общий множитель .
Этап 5.5.2.1.1
Сократим общий множитель.
Этап 5.5.2.1.2
Разделим на .
Этап 5.5.3
Упростим правую часть.
Этап 5.5.3.1
Вынесем знак минуса перед дробью.
Этап 5.5.3.2
Объединим числители над общим знаменателем.
Этап 5.5.3.3
Объединим числители над общим знаменателем.
Этап 5.5.3.4
Вынесем множитель из .
Этап 5.5.3.5
Перепишем в виде .
Этап 5.5.3.6
Вынесем множитель из .
Этап 5.5.3.7
Перепишем отрицательные члены.
Этап 5.5.3.7.1
Перепишем в виде .
Этап 5.5.3.7.2
Вынесем знак минуса перед дробью.
Этап 6
Заменим на .