Введите задачу...
Математический анализ Примеры
Этап 1
С помощью запишем в виде .
Этап 2
Продифференцируем обе части уравнения.
Этап 3
Производная по равна .
Этап 4
Этап 4.1
По правилу суммы производная по имеет вид .
Этап 4.2
Найдем значение .
Этап 4.2.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.2.3
Объединим и .
Этап 4.2.4
Объединим числители над общим знаменателем.
Этап 4.2.5
Упростим числитель.
Этап 4.2.5.1
Умножим на .
Этап 4.2.5.2
Вычтем из .
Этап 4.2.6
Вынесем знак минуса перед дробью.
Этап 4.3
Найдем значение .
Этап 4.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.3.2
Перепишем в виде .
Этап 4.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.4
Умножим на .
Этап 4.4
Упростим.
Этап 4.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.4.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 4.4.3
Объединим термины.
Этап 4.4.3.1
Умножим на .
Этап 4.4.3.2
Объединим и .
Этап 4.4.3.3
Вынесем знак минуса перед дробью.
Этап 4.4.4
Изменим порядок членов.
Этап 5
Преобразуем уравнение, приравняв левую часть к правой.
Этап 6
Заменим на .