Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.1.2
Производная по равна .
Этап 2.2.1.3
Заменим все вхождения на .
Этап 2.2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2.3
Перепишем в виде .
Этап 2.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.5
Умножим на .
Этап 2.3
Найдем значение .
Этап 2.3.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3.2
Перепишем в виде .
Этап 2.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4
Умножим на .
Этап 2.4
Упростим.
Этап 2.4.1
Применим свойство дистрибутивности.
Этап 2.4.2
Изменим порядок членов.
Этап 3
Поскольку является константой относительно , производная относительно равна .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Этап 5.1
Упростим левую часть.
Этап 5.1.1
Изменим порядок множителей в .
Этап 5.2
Упростим .
Этап 5.2.1
Упростим выражение.
Этап 5.2.1.1
Перенесем .
Этап 5.2.1.2
Изменим порядок и .
Этап 5.2.2
Вынесем множитель из .
Этап 5.2.3
Вынесем множитель из .
Этап 5.2.4
Вынесем множитель из .
Этап 5.2.5
Переставляем члены.
Этап 5.2.6
Применим формулу Пифагора.
Этап 5.2.7
Изменим порядок и .
Этап 5.2.8
Перепишем в виде .
Этап 5.2.9
Вынесем множитель из .
Этап 5.2.10
Вынесем множитель из .
Этап 5.2.11
Вынесем множитель из .
Этап 5.2.12
Переставляем члены.
Этап 5.2.13
Применим формулу Пифагора.
Этап 5.3
Добавим к обеим частям уравнения.
Этап 5.4
Разделим каждый член на и упростим.
Этап 5.4.1
Разделим каждый член на .
Этап 5.4.2
Упростим левую часть.
Этап 5.4.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.4.2.2
Сократим общий множитель .
Этап 5.4.2.2.1
Сократим общий множитель.
Этап 5.4.2.2.2
Перепишем это выражение.
Этап 5.4.2.3
Сократим общий множитель .
Этап 5.4.2.3.1
Сократим общий множитель.
Этап 5.4.2.3.2
Разделим на .
Этап 5.4.3
Упростим правую часть.
Этап 5.4.3.1
Сократим общий множитель .
Этап 5.4.3.1.1
Сократим общий множитель.
Этап 5.4.3.1.2
Перепишем это выражение.
Этап 5.4.3.2
Вынесем знак минуса перед дробью.
Этап 6
Заменим на .