Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Этап 2.1
Продифференцируем.
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.2.3
Заменим все вхождения на .
Этап 2.2.3
Перепишем в виде .
Этап 2.2.4
Умножим на .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.2.3
Перепишем в виде .
Этап 3.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.5
Перенесем влево от .
Этап 3.3
Найдем значение .
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3.3
Заменим все вхождения на .
Этап 3.3.4
Перепишем в виде .
Этап 3.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.6
Перенесем влево от .
Этап 3.3.7
Умножим на .
Этап 3.4
Упростим.
Этап 3.4.1
Применим свойство дистрибутивности.
Этап 3.4.2
Применим свойство дистрибутивности.
Этап 3.4.3
Объединим термины.
Этап 3.4.3.1
Умножим на .
Этап 3.4.3.2
Умножим на .
Этап 3.4.4
Изменим порядок членов.
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Этап 5.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 5.2
Добавим к обеим частям уравнения.
Этап 5.3
Перенесем все члены без в правую часть уравнения.
Этап 5.3.1
Добавим к обеим частям уравнения.
Этап 5.3.2
Вычтем из обеих частей уравнения.
Этап 5.4
Вынесем множитель из .
Этап 5.4.1
Вынесем множитель из .
Этап 5.4.2
Вынесем множитель из .
Этап 5.4.3
Вынесем множитель из .
Этап 5.4.4
Вынесем множитель из .
Этап 5.4.5
Вынесем множитель из .
Этап 5.5
Разложим на множители, используя правило полных квадратов.
Этап 5.5.1
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 5.5.2
Перепишем многочлен.
Этап 5.5.3
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 5.6
Разделим каждый член на и упростим.
Этап 5.6.1
Разделим каждый член на .
Этап 5.6.2
Упростим левую часть.
Этап 5.6.2.1
Сократим общий множитель .
Этап 5.6.2.1.1
Сократим общий множитель.
Этап 5.6.2.1.2
Перепишем это выражение.
Этап 5.6.2.2
Сократим общий множитель .
Этап 5.6.2.2.1
Сократим общий множитель.
Этап 5.6.2.2.2
Разделим на .
Этап 5.6.3
Упростим правую часть.
Этап 5.6.3.1
Упростим каждый член.
Этап 5.6.3.1.1
Сократим общий множитель .
Этап 5.6.3.1.1.1
Сократим общий множитель.
Этап 5.6.3.1.1.2
Перепишем это выражение.
Этап 5.6.3.1.2
Сократим общий множитель .
Этап 5.6.3.1.2.1
Сократим общий множитель.
Этап 5.6.3.1.2.2
Перепишем это выражение.
Этап 5.6.3.1.3
Сократим общий множитель и .
Этап 5.6.3.1.3.1
Вынесем множитель из .
Этап 5.6.3.1.3.2
Сократим общие множители.
Этап 5.6.3.1.3.2.1
Вынесем множитель из .
Этап 5.6.3.1.3.2.2
Сократим общий множитель.
Этап 5.6.3.1.3.2.3
Перепишем это выражение.
Этап 5.6.3.1.4
Вынесем знак минуса перед дробью.
Этап 6
Заменим на .