Математический анализ Примеры

Этап 1
Продифференцируем обе части уравнения.
Этап 2
Производная по равна .
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.1.1
По правилу суммы производная по имеет вид .
Этап 3.1.2
Поскольку является константой относительно , производная относительно равна .
Этап 3.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Объединим и .
Этап 3.2.2
Поскольку является константой относительно , производная по равна .
Этап 3.2.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.3.2
Производная по равна .
Этап 3.2.3.3
Заменим все вхождения на .
Этап 3.2.4
Поскольку является константой относительно , производная по равна .
Этап 3.2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.6
Умножим на .
Этап 3.2.7
Объединим и .
Этап 3.2.8
Умножим на .
Этап 3.2.9
Объединим и .
Этап 3.2.10
Умножим на .
Этап 3.2.11
Вынесем знак минуса перед дробью.
Этап 3.3
Вычтем из .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Заменим на .