Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Производная по равна .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Этап 3.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.1.3
Заменим все вхождения на .
Этап 3.2.2
По правилу суммы производная по имеет вид .
Этап 3.2.3
Поскольку является константой относительно , производная относительно равна .
Этап 3.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.5
Добавим и .
Этап 3.2.6
Умножим на .
Этап 3.3
Найдем значение .
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.2.3
Заменим все вхождения на .
Этап 3.3.3
По правилу суммы производная по имеет вид .
Этап 3.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.6
Добавим и .
Этап 3.3.7
Умножим на .
Этап 3.3.8
Умножим на .
Этап 3.4
Вынесем множитель из .
Этап 3.4.1
Вынесем множитель из .
Этап 3.4.2
Вынесем множитель из .
Этап 3.4.3
Вынесем множитель из .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Заменим на .