Введите задачу...
Математический анализ Примеры
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Производная по равна .
Этап 2.3
Найдем значение .
Этап 2.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.1.2
Производная по равна .
Этап 2.3.1.3
Заменим все вхождения на .
Этап 2.3.2
Перепишем в виде .
Этап 2.3.3
Объединим и .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3
Умножим на .
Этап 3.3
Найдем значение .
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Перепишем в виде .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Этап 5.1
Добавим к обеим частям уравнения.
Этап 5.2
Найдем НОК знаменателей членов уравнения.
Этап 5.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 5.2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Этап 5.2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 5.2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 5.2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 5.2.6
Множителем является само значение .
встречается раз.
Этап 5.2.7
Множителем является само значение .
встречается раз.
Этап 5.2.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 5.3
Каждый член в умножим на , чтобы убрать дроби.
Этап 5.3.1
Умножим каждый член на .
Этап 5.3.2
Упростим левую часть.
Этап 5.3.2.1
Упростим каждый член.
Этап 5.3.2.1.1
Сократим общий множитель .
Этап 5.3.2.1.1.1
Вынесем множитель из .
Этап 5.3.2.1.1.2
Сократим общий множитель.
Этап 5.3.2.1.1.3
Перепишем это выражение.
Этап 5.3.2.1.2
Сократим общий множитель .
Этап 5.3.2.1.2.1
Вынесем множитель из .
Этап 5.3.2.1.2.2
Сократим общий множитель.
Этап 5.3.2.1.2.3
Перепишем это выражение.
Этап 5.3.3
Упростим правую часть.
Этап 5.3.3.1
Избавимся от скобок.
Этап 5.4
Решим уравнение.
Этап 5.4.1
Вычтем из обеих частей уравнения.
Этап 5.4.2
Вынесем множитель из .
Этап 5.4.2.1
Вынесем множитель из .
Этап 5.4.2.2
Вынесем множитель из .
Этап 5.4.2.3
Вынесем множитель из .
Этап 5.4.3
Разделим каждый член на и упростим.
Этап 5.4.3.1
Разделим каждый член на .
Этап 5.4.3.2
Упростим левую часть.
Этап 5.4.3.2.1
Сократим общий множитель .
Этап 5.4.3.2.1.1
Сократим общий множитель.
Этап 5.4.3.2.1.2
Перепишем это выражение.
Этап 5.4.3.2.2
Сократим общий множитель .
Этап 5.4.3.2.2.1
Сократим общий множитель.
Этап 5.4.3.2.2.2
Разделим на .
Этап 5.4.3.3
Упростим правую часть.
Этап 5.4.3.3.1
Упростим каждый член.
Этап 5.4.3.3.1.1
Сократим общий множитель .
Этап 5.4.3.3.1.1.1
Сократим общий множитель.
Этап 5.4.3.3.1.1.2
Перепишем это выражение.
Этап 5.4.3.3.1.2
Вынесем знак минуса перед дробью.
Этап 5.4.3.3.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.4.3.3.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 5.4.3.3.3.1
Умножим на .
Этап 5.4.3.3.3.2
Изменим порядок множителей в .
Этап 5.4.3.3.4
Объединим числители над общим знаменателем.
Этап 5.4.3.3.5
Вынесем множитель из .
Этап 5.4.3.3.5.1
Вынесем множитель из .
Этап 5.4.3.3.5.2
Вынесем множитель из .
Этап 5.4.3.3.5.3
Вынесем множитель из .
Этап 6
Заменим на .