Математический анализ Примеры

Trovare dy/dx натуральный логарифм xy+4x=15
Этап 1
Продифференцируем обе части уравнения.
Этап 2
Продифференцируем левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.1.2
Производная по равна .
Этап 2.2.1.3
Заменим все вхождения на .
Этап 2.2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2.3
Перепишем в виде .
Этап 2.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.5
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Применим свойство дистрибутивности.
Этап 2.4.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Объединим и .
Этап 2.4.2.2
Объединим и .
Этап 2.4.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.4.2.3.1
Сократим общий множитель.
Этап 2.4.2.3.2
Перепишем это выражение.
Этап 2.4.2.4
Объединим и .
Этап 2.4.2.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.4.2.5.1
Сократим общий множитель.
Этап 2.4.2.5.2
Перепишем это выражение.
Этап 3
Поскольку является константой относительно , производная относительно равна .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Вычтем из обеих частей уравнения.
Этап 5.1.2
Вычтем из обеих частей уравнения.
Этап 5.2
Умножим обе части на .
Этап 5.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.1.1.1
Сократим общий множитель.
Этап 5.3.1.1.2
Перепишем это выражение.
Этап 5.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1.1
Применим свойство дистрибутивности.
Этап 5.3.2.1.2
Объединим и .
Этап 6
Заменим на .