Математический анализ Примеры

Этап 1
Продифференцируем обе части уравнения.
Этап 2
Производная по равна .
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3
Умножим на .
Этап 3.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3
Умножим на .
Этап 3.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Изменим порядок членов.
Этап 3.4.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 3.4.2.2
Объединим и .
Этап 3.4.2.3
Перепишем выражение, используя правило отрицательных степеней .
Этап 3.4.2.4
Объединим и .
Этап 3.4.2.5
Вынесем знак минуса перед дробью.
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Заменим на .