Введите задачу...
Математический анализ Примеры
Этап 1
Найдем, где выражение не определено.
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 2
Вертикальные асимптоты находятся в точках бесконечного разрыва непрерывности.
Нет вертикальных асимптот
Этап 3
Этап 3.1
Перепишем в виде .
Этап 3.2
Применим правило Лопиталя.
Этап 3.2.1
Найдем предел числителя и предел знаменателя.
Этап 3.2.1.1
Возьмем предел числителя и предел знаменателя.
Этап 3.2.1.2
Для многочлена, старший коэффициент которого положителен, предел в бесконечности равен бесконечности.
Этап 3.2.1.3
Поскольку показатель степени стремится к , величина стремится к .
Этап 3.2.1.4
Деление бесконечности на бесконечность не определено.
Неопределенные
Этап 3.2.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3.2.3
Найдем производную числителя и знаменателя.
Этап 3.2.3.1
Продифференцируем числитель и знаменатель.
Этап 3.2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.4
Применим правило Лопиталя.
Этап 3.4.1
Найдем предел числителя и предел знаменателя.
Этап 3.4.1.1
Возьмем предел числителя и предел знаменателя.
Этап 3.4.1.2
Для многочлена, старший коэффициент которого положителен, предел в бесконечности равен бесконечности.
Этап 3.4.1.3
Поскольку показатель степени стремится к , величина стремится к .
Этап 3.4.1.4
Деление бесконечности на бесконечность не определено.
Неопределенные
Этап 3.4.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 3.4.3
Найдем производную числителя и знаменателя.
Этап 3.4.3.1
Продифференцируем числитель и знаменатель.
Этап 3.4.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4.3.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.5
Поскольку числитель стремится к вещественному числу, а знаменатель неограничен, дробь стремится к .
Этап 3.6
Умножим на .
Этап 4
Перечислим горизонтальные асимптоты:
Этап 5
Наклонной асимптоты нет, поскольку степень числителя меньше или равна степени знаменателя.
Нет наклонных асимптот
Этап 6
Это множество всех асимптот.
Нет вертикальных асимптот
Горизонтальные асимптоты:
Нет наклонных асимптот
Этап 7