Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Продифференцируем, используя правило умножения на константу.
Этап 1.1.1.1
С помощью запишем в виде .
Этап 1.1.1.2
Поскольку является константой относительно , производная по равна .
Этап 1.1.2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.1.3
Перемножим экспоненты в .
Этап 1.1.3.1
Применим правило степени и перемножим показатели, .
Этап 1.1.3.2
Сократим общий множитель .
Этап 1.1.3.2.1
Сократим общий множитель.
Этап 1.1.3.2.2
Перепишем это выражение.
Этап 1.1.4
Упростим.
Этап 1.1.5
Продифференцируем, используя правило степени.
Этап 1.1.5.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.5.2
Умножим на .
Этап 1.1.6
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.1.6.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.6.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.6.3
Заменим все вхождения на .
Этап 1.1.7
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.1.8
Объединим и .
Этап 1.1.9
Объединим числители над общим знаменателем.
Этап 1.1.10
Упростим числитель.
Этап 1.1.10.1
Умножим на .
Этап 1.1.10.2
Вычтем из .
Этап 1.1.11
Объединим дроби.
Этап 1.1.11.1
Вынесем знак минуса перед дробью.
Этап 1.1.11.2
Объединим и .
Этап 1.1.11.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.1.11.4
Объединим и .
Этап 1.1.12
По правилу суммы производная по имеет вид .
Этап 1.1.13
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.14
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.15
Упростим выражение.
Этап 1.1.15.1
Добавим и .
Этап 1.1.15.2
Умножим на .
Этап 1.1.16
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.1.17
Объединим и .
Этап 1.1.18
Объединим числители над общим знаменателем.
Этап 1.1.19
Умножим на , сложив экспоненты.
Этап 1.1.19.1
Перенесем .
Этап 1.1.19.2
Применим правило степени для объединения показателей.
Этап 1.1.19.3
Объединим числители над общим знаменателем.
Этап 1.1.19.4
Добавим и .
Этап 1.1.19.5
Разделим на .
Этап 1.1.20
Упростим .
Этап 1.1.21
Перенесем влево от .
Этап 1.1.22
Перепишем в виде произведения.
Этап 1.1.23
Умножим на .
Этап 1.1.24
Возведем в степень .
Этап 1.1.25
Применим правило степени для объединения показателей.
Этап 1.1.26
Упростим выражение.
Этап 1.1.26.1
Запишем в виде дроби с общим знаменателем.
Этап 1.1.26.2
Объединим числители над общим знаменателем.
Этап 1.1.26.3
Добавим и .
Этап 1.1.27
Объединим и .
Этап 1.1.28
Сократим общий множитель.
Этап 1.1.29
Перепишем это выражение.
Этап 1.1.30
Упростим.
Этап 1.1.30.1
Применим свойство дистрибутивности.
Этап 1.1.30.2
Упростим числитель.
Этап 1.1.30.2.1
Умножим на .
Этап 1.1.30.2.2
Вычтем из .
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Приравняем числитель к нулю.
Этап 2.3
Добавим к обеим частям уравнения.
Этап 3
Этап 3.1
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 3.2
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 3.3
Решим относительно .
Этап 3.3.1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 3.3.2
Упростим каждую часть уравнения.
Этап 3.3.2.1
С помощью запишем в виде .
Этап 3.3.2.2
Упростим левую часть.
Этап 3.3.2.2.1
Перемножим экспоненты в .
Этап 3.3.2.2.1.1
Применим правило степени и перемножим показатели, .
Этап 3.3.2.2.1.2
Сократим общий множитель .
Этап 3.3.2.2.1.2.1
Сократим общий множитель.
Этап 3.3.2.2.1.2.2
Перепишем это выражение.
Этап 3.3.2.3
Упростим правую часть.
Этап 3.3.2.3.1
Возведение в любую положительную степень дает .
Этап 3.3.3
Решим относительно .
Этап 3.3.3.1
Приравняем к .
Этап 3.3.3.2
Добавим к обеим частям уравнения.
Этап 3.4
Зададим подкоренное выражение в меньшим , чтобы узнать, где данное выражение не определено.
Этап 3.5
Решим относительно .
Этап 3.5.1
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Этап 3.5.2
Упростим уравнение.
Этап 3.5.2.1
Упростим левую часть.
Этап 3.5.2.1.1
Вынесем члены из-под знака корня.
Этап 3.5.2.2
Упростим правую часть.
Этап 3.5.2.2.1
Упростим .
Этап 3.5.2.2.1.1
Перепишем в виде .
Этап 3.5.2.2.1.2
Вынесем члены из-под знака корня.
Этап 3.5.3
Добавим к обеим частям неравенства.
Этап 3.6
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 4
Этап 4.1
Найдем значение в .
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Этап 4.1.2.1
Умножим на .
Этап 4.1.2.2
Упростим знаменатель.
Этап 4.1.2.2.1
Вычтем из .
Этап 4.1.2.2.2
Любой корень из равен .
Этап 4.1.2.3
Разделим на .
Этап 4.2
Найдем значение в .
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Этап 4.2.2.1
Избавимся от скобок.
Этап 4.2.2.2
Вычтем из .
Этап 4.2.2.3
Перепишем в виде .
Этап 4.2.2.4
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.2.2.5
Выражение содержит деление на . Выражение не определено.
Неопределенные
Неопределенные
Неопределенные
Этап 4.3
Перечислим все точки.
Этап 5