Математический анализ Примеры

Найти особые точки f(x)=(x^2-1)^(1/3)
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.3
Заменим все вхождения на .
Этап 1.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.1.3
Объединим и .
Этап 1.1.4
Объединим числители над общим знаменателем.
Этап 1.1.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.1.5.1
Умножим на .
Этап 1.1.5.2
Вычтем из .
Этап 1.1.6
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 1.1.6.1
Вынесем знак минуса перед дробью.
Этап 1.1.6.2
Объединим и .
Этап 1.1.6.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.1.7
По правилу суммы производная по имеет вид .
Этап 1.1.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.9
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.10
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 1.1.10.1
Добавим и .
Этап 1.1.10.2
Объединим и .
Этап 1.1.10.3
Объединим и .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Приравняем числитель к нулю.
Этап 2.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим каждый член на .
Этап 2.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Сократим общий множитель.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Разделим на .
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 3.1
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 3.2
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 3.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в куб.
Этап 3.3.2
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
С помощью запишем в виде .
Этап 3.3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.2.2.1.1
Применим правило умножения к .
Этап 3.3.2.2.1.2
Возведем в степень .
Этап 3.3.2.2.1.3
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.3.2.2.1.3.1
Применим правило степени и перемножим показатели, .
Этап 3.3.2.2.1.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.2.1.3.2.1
Сократим общий множитель.
Этап 3.3.2.2.1.3.2.2
Перепишем это выражение.
Этап 3.3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.3.1
Возведение в любую положительную степень дает .
Этап 3.3.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.3.1
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 3.3.3.1.1
Перепишем в виде .
Этап 3.3.3.1.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 3.3.3.1.3
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 3.3.3.1.3.1
Применим правило умножения к .
Этап 3.3.3.1.3.2
Избавимся от ненужных скобок.
Этап 3.3.3.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.3.3.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.3.3.1
Приравняем к .
Этап 3.3.3.3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.3.3.2.1
Приравняем к .
Этап 3.3.3.3.2.2
Вычтем из обеих частей уравнения.
Этап 3.3.3.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.3.4.1
Приравняем к .
Этап 3.3.3.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.3.4.2.1
Приравняем к .
Этап 3.3.3.4.2.2
Добавим к обеим частям уравнения.
Этап 3.3.3.5
Окончательным решением являются все значения, при которых верно.
Этап 3.4
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1.1
Возведение в любую положительную степень дает .
Этап 4.1.2.1.2
Вычтем из .
Этап 4.1.2.1.3
Перепишем в виде .
Этап 4.1.2.1.4
Применим правило степени и перемножим показатели, .
Этап 4.1.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.1.2.2.1
Сократим общий множитель.
Этап 4.1.2.2.2
Перепишем это выражение.
Этап 4.1.2.3
Найдем экспоненту.
Этап 4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Возведем в степень .
Этап 4.2.2.1.2
Вычтем из .
Этап 4.2.2.1.3
Перепишем в виде .
Этап 4.2.2.1.4
Применим правило степени и перемножим показатели, .
Этап 4.2.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1
Сократим общий множитель.
Этап 4.2.2.2.2
Перепишем это выражение.
Этап 4.2.2.3
Найдем экспоненту.
Этап 4.3
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Подставим вместо .
Этап 4.3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.1
Единица в любой степени равна единице.
Этап 4.3.2.1.2
Вычтем из .
Этап 4.3.2.1.3
Перепишем в виде .
Этап 4.3.2.1.4
Применим правило степени и перемножим показатели, .
Этап 4.3.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.3.2.2.1
Сократим общий множитель.
Этап 4.3.2.2.2
Перепишем это выражение.
Этап 4.3.2.3
Найдем экспоненту.
Этап 4.4
Перечислим все точки.
Этап 5