Математический анализ Примеры

Найти горизонтальную касательную y^2=x^3+3x^2
Этап 1
Solve the equation as in terms of .
Нажмите для увеличения количества этапов...
Этап 1.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 1.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Вынесем множитель из .
Этап 1.2.1.2
Вынесем множитель из .
Этап 1.2.1.3
Вынесем множитель из .
Этап 1.2.2
Вынесем члены из-под знака корня.
Этап 1.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 1.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 1.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2
Set each solution of as a function of .
Этап 3
Because the variable in the equation has a degree greater than , use implicit differentiation to solve for the derivative .
Нажмите для увеличения количества этапов...
Этап 3.1
Продифференцируем обе части уравнения.
Этап 3.2
Продифференцируем левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.1.3
Заменим все вхождения на .
Этап 3.2.2
Перепишем в виде .
Этап 3.3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
По правилу суммы производная по имеет вид .
Этап 3.3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.2.3
Умножим на .
Этап 3.4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 3.5
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Разделим каждый член на .
Этап 3.5.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.5.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.5.2.1.1
Сократим общий множитель.
Этап 3.5.2.1.2
Перепишем это выражение.
Этап 3.5.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.5.2.2.1
Сократим общий множитель.
Этап 3.5.2.2.2
Разделим на .
Этап 3.5.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.5.3.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 3.5.3.1.1
Вынесем множитель из .
Этап 3.5.3.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 3.5.3.1.2.1
Вынесем множитель из .
Этап 3.5.3.1.2.2
Сократим общий множитель.
Этап 3.5.3.1.2.3
Перепишем это выражение.
Этап 3.6
Заменим на .
Этап 4
Приравняем производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 4.1.2
Так как содержит и числа, и переменные, НОК можно найти в два этапа. Найдем НОК для числовой части , затем найдем НОК для части с переменной .
Этап 4.1.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 4.1.4
Поскольку не имеет множителей, кроме и .
 — простое число
Этап 4.1.5
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 4.1.6
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 4.1.7
Множителем является само значение .
встречается раз.
Этап 4.1.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 4.1.9
НОК представляет собой произведение числовой части и переменной части.
Этап 4.2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Умножим каждый член на .
Этап 4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 4.2.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.2.1
Вынесем множитель из .
Этап 4.2.2.1.2.2
Сократим общий множитель.
Этап 4.2.2.1.2.3
Перепишем это выражение.
Этап 4.2.2.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.3.1
Сократим общий множитель.
Этап 4.2.2.1.3.2
Перепишем это выражение.
Этап 4.2.2.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 4.2.2.1.5
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.5.1
Объединим и .
Этап 4.2.2.1.5.2
Умножим на .
Этап 4.2.2.1.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.6.1
Сократим общий множитель.
Этап 4.2.2.1.6.2
Перепишем это выражение.
Этап 4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.2.3.1.1
Умножим на .
Этап 4.2.3.1.2
Умножим на .
Этап 4.3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.3.1.1
Вынесем множитель из .
Этап 4.3.1.2
Вынесем множитель из .
Этап 4.3.1.3
Вынесем множитель из .
Этап 4.3.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.3.3
Приравняем к .
Этап 4.3.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.3.4.1
Приравняем к .
Этап 4.3.4.2
Вычтем из обеих частей уравнения.
Этап 4.3.5
Окончательным решением являются все значения, при которых верно.
Этап 5
Solve the function at .
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Добавим и .
Этап 5.2.2
Умножим на .
Этап 5.2.3
Окончательный ответ: .
Этап 6
Solve the function at .
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Добавим и .
Этап 6.2.2
Любой корень из равен .
Этап 6.2.3
Умножим на .
Этап 6.2.4
Окончательный ответ: .
Этап 7
Solve the function at .
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Добавим и .
Этап 7.2.2
Любой корень из равен .
Этап 7.2.3
Умножим на .
Этап 7.2.4
Окончательный ответ: .
Этап 8
The horizontal tangent lines are
Этап 9