Введите задачу...
Математический анализ Примеры
Этап 1
Примем как функцию .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Продифференцируем, используя правило константы.
Этап 2.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.2
Добавим и .
Этап 3
Поскольку , решения отсутствуют.
Нет решения
Этап 4
Отсутствие решений в случае, когда производная равна , означает, что горизонтальные касательные отсутствуют.
Горизонтальные касательные не найдены
Этап 5