Математический анализ Примеры

Найти абсолютный максимум и минимум на интервале f(x)=x^3-12x , (0,4)
,
Этап 1
Найдем критические точки.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.3
Умножим на .
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Добавим к обеим частям уравнения.
Этап 1.2.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Разделим каждый член на .
Этап 1.2.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.1.1
Сократим общий множитель.
Этап 1.2.3.2.1.2
Разделим на .
Этап 1.2.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.3.1
Разделим на .
Этап 1.2.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 1.2.5
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Перепишем в виде .
Этап 1.2.5.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 1.2.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 1.2.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 1.2.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 1.2.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1.1
Возведем в степень .
Этап 1.4.1.2.1.2
Умножим на .
Этап 1.4.1.2.2
Вычтем из .
Этап 1.4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Подставим вместо .
Этап 1.4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.1
Возведем в степень .
Этап 1.4.2.2.1.2
Умножим на .
Этап 1.4.2.2.2
Добавим и .
Этап 1.4.3
Перечислим все точки.
Этап 2
Исключим точки, которые не принадлежат данному интервалу.
Этап 3
Определим точки возможного максимума или минимума с помощью первой производной.
Нажмите для увеличения количества этапов...
Этап 3.1
Разобьем на отдельные интервалы в окрестности значений , при которых первая производная равна или не определена.
Этап 3.2
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 3.2.1
Заменим в этом выражении переменную на .
Этап 3.2.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Возведем в степень .
Этап 3.2.2.1.2
Умножим на .
Этап 3.2.2.2
Вычтем из .
Этап 3.2.2.3
Окончательный ответ: .
Этап 3.3
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 3.3.1
Заменим в этом выражении переменную на .
Этап 3.3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Возведение в любую положительную степень дает .
Этап 3.3.2.1.2
Умножим на .
Этап 3.3.2.2
Вычтем из .
Этап 3.3.2.3
Окончательный ответ: .
Этап 3.4
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 3.4.1
Заменим в этом выражении переменную на .
Этап 3.4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1.1
Возведем в степень .
Этап 3.4.2.1.2
Умножим на .
Этап 3.4.2.2
Вычтем из .
Этап 3.4.2.3
Окончательный ответ: .
Этап 3.5
Поскольку первая производная меняет знак с положительного на отрицательный в окрестности ,  — локальный максимум.
 — локальный максимум
Этап 3.6
Поскольку первая производная меняет знак с отрицательного на положительный в окрестности ,  — локальный минимум.
 — локальный минимум
Этап 3.7
Это локальные экстремумы .
 — локальный максимум
 — локальный минимум
 — локальный максимум
 — локальный минимум
Этап 4
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Нет абсолютного максимума
Абсолютный минимум:
Этап 5