Введите задачу...
Математический анализ Примеры
,
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Найдем первую производную.
Этап 1.1.1.1
Продифференцируем.
Этап 1.1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2
Найдем значение .
Этап 1.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.3
Умножим на .
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Добавим к обеим частям уравнения.
Этап 1.2.3
Разделим каждый член на и упростим.
Этап 1.2.3.1
Разделим каждый член на .
Этап 1.2.3.2
Упростим левую часть.
Этап 1.2.3.2.1
Сократим общий множитель .
Этап 1.2.3.2.1.1
Сократим общий множитель.
Этап 1.2.3.2.1.2
Разделим на .
Этап 1.2.3.3
Упростим правую часть.
Этап 1.2.3.3.1
Разделим на .
Этап 1.2.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 1.2.5
Упростим .
Этап 1.2.5.1
Перепишем в виде .
Этап 1.2.5.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 1.2.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.2.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 1.2.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 1.2.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.3
Найдем значения, при которых производная не определена.
Этап 1.3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Этап 1.4.1
Найдем значение в .
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Этап 1.4.1.2.1
Упростим каждый член.
Этап 1.4.1.2.1.1
Возведем в степень .
Этап 1.4.1.2.1.2
Умножим на .
Этап 1.4.1.2.2
Вычтем из .
Этап 1.4.2
Найдем значение в .
Этап 1.4.2.1
Подставим вместо .
Этап 1.4.2.2
Упростим.
Этап 1.4.2.2.1
Упростим каждый член.
Этап 1.4.2.2.1.1
Возведем в степень .
Этап 1.4.2.2.1.2
Умножим на .
Этап 1.4.2.2.2
Добавим и .
Этап 1.4.3
Перечислим все точки.
Этап 2
Исключим точки, которые не принадлежат данному интервалу.
Этап 3
Этап 3.1
Разобьем на отдельные интервалы в окрестности значений , при которых первая производная равна или не определена.
Этап 3.2
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 3.2.1
Заменим в этом выражении переменную на .
Этап 3.2.2
Упростим результат.
Этап 3.2.2.1
Упростим каждый член.
Этап 3.2.2.1.1
Возведем в степень .
Этап 3.2.2.1.2
Умножим на .
Этап 3.2.2.2
Вычтем из .
Этап 3.2.2.3
Окончательный ответ: .
Этап 3.3
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 3.3.1
Заменим в этом выражении переменную на .
Этап 3.3.2
Упростим результат.
Этап 3.3.2.1
Упростим каждый член.
Этап 3.3.2.1.1
Возведение в любую положительную степень дает .
Этап 3.3.2.1.2
Умножим на .
Этап 3.3.2.2
Вычтем из .
Этап 3.3.2.3
Окончательный ответ: .
Этап 3.4
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 3.4.1
Заменим в этом выражении переменную на .
Этап 3.4.2
Упростим результат.
Этап 3.4.2.1
Упростим каждый член.
Этап 3.4.2.1.1
Возведем в степень .
Этап 3.4.2.1.2
Умножим на .
Этап 3.4.2.2
Вычтем из .
Этап 3.4.2.3
Окончательный ответ: .
Этап 3.5
Поскольку первая производная меняет знак с положительного на отрицательный в окрестности , — локальный максимум.
— локальный максимум
Этап 3.6
Поскольку первая производная меняет знак с отрицательного на положительный в окрестности , — локальный минимум.
— локальный минимум
Этап 3.7
Это локальные экстремумы .
— локальный максимум
— локальный минимум
— локальный максимум
— локальный минимум
Этап 4
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Нет абсолютного максимума
Абсолютный минимум:
Этап 5