Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Продифференцируем.
Этап 1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2
Найдем значение .
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Умножим на .
Этап 1.1.3
Изменим порядок членов.
Этап 1.2
Первая производная по равна .
Этап 2
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Вычтем из обеих частей уравнения.
Этап 2.3
Разделим каждый член на и упростим.
Этап 2.3.1
Разделим каждый член на .
Этап 2.3.2
Упростим левую часть.
Этап 2.3.2.1
Сократим общий множитель .
Этап 2.3.2.1.1
Сократим общий множитель.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.3
Упростим правую часть.
Этап 2.3.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.5
Упростим .
Этап 2.5.1
Перепишем в виде .
Этап 2.5.2
Любой корень из равен .
Этап 2.5.3
Умножим на .
Этап 2.5.4
Объединим и упростим знаменатель.
Этап 2.5.4.1
Умножим на .
Этап 2.5.4.2
Возведем в степень .
Этап 2.5.4.3
Возведем в степень .
Этап 2.5.4.4
Применим правило степени для объединения показателей.
Этап 2.5.4.5
Добавим и .
Этап 2.5.4.6
Перепишем в виде .
Этап 2.5.4.6.1
С помощью запишем в виде .
Этап 2.5.4.6.2
Применим правило степени и перемножим показатели, .
Этап 2.5.4.6.3
Объединим и .
Этап 2.5.4.6.4
Сократим общий множитель .
Этап 2.5.4.6.4.1
Сократим общий множитель.
Этап 2.5.4.6.4.2
Перепишем это выражение.
Этап 2.5.4.6.5
Найдем экспоненту.
Этап 2.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3
Значения, при которых производная равна : .
Этап 4
Разобьем на отдельные интервалы вокруг значений , при которых производная равна или не определена.
Этап 5
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Этап 5.2.1
Упростим каждый член.
Этап 5.2.1.1
Возведем в степень .
Этап 5.2.1.2
Умножим на .
Этап 5.2.2
Добавим и .
Этап 5.2.3
Окончательный ответ: .
Этап 5.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 6
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Этап 6.2.1
Упростим каждый член.
Этап 6.2.1.1
Возведение в любую положительную степень дает .
Этап 6.2.1.2
Умножим на .
Этап 6.2.2
Добавим и .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 7
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Этап 7.2.1
Упростим каждый член.
Этап 7.2.1.1
Возведем в степень .
Этап 7.2.1.2
Умножим на .
Этап 7.2.2
Добавим и .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 8
Перечислим интервалы, на которых функция возрастает и убывает.
Возрастание в области:
Убывание на:
Этап 9