Математический анализ Примеры

Найти интервалы убывания и возрастания с помощью производных f(x)=x/(x-1)
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.2
Умножим на .
Этап 1.1.2.3
По правилу суммы производная по имеет вид .
Этап 1.1.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.2.6
Упростим путем добавления членов.
Нажмите для увеличения количества этапов...
Этап 1.1.2.6.1
Добавим и .
Этап 1.1.2.6.2
Умножим на .
Этап 1.1.2.6.3
Вычтем из .
Этап 1.1.2.6.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.1.2.6.4.1
Вычтем из .
Этап 1.1.2.6.4.2
Вынесем знак минуса перед дробью.
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Приравняем числитель к нулю.
Этап 2.3
Поскольку , решения отсутствуют.
Нет решения
Нет решения
Этап 3
В области определения исходной задачи нет значений , при которых производная равна или не определена.
Критические точки не найдены
Этап 4
Найдем, где производная не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Приравняем к .
Этап 4.2.2
Добавим к обеим частям уравнения.
Этап 5
Найдя точку, в которой производная равна или не определена, проверим возрастание и убывание в интервале .
Этап 6
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Вычтем из .
Этап 6.2.1.2
Возведем в степень .
Этап 6.2.2
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1.1
Сократим общий множитель.
Этап 6.2.2.1.2
Перепишем это выражение.
Этап 6.2.2.2
Умножим на .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 7
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Вычтем из .
Этап 7.2.1.2
Единица в любой степени равна единице.
Этап 7.2.2
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.2.1.1
Сократим общий множитель.
Этап 7.2.2.1.2
Перепишем это выражение.
Этап 7.2.2.2
Умножим на .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 8
Перечислим интервалы, на которых функция возрастает и убывает.
Убывание на:
Этап 9