Математический анализ Примеры

Найти точки перегиба y=x^(1/3)(x-4)
Этап 1
Запишем в виде функции.
Этап 2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
По правилу суммы производная по имеет вид .
Этап 2.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.2.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.1.2.4.1
Добавим и .
Этап 2.1.2.4.2
Умножим на .
Этап 2.1.2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.1.4
Объединим и .
Этап 2.1.5
Объединим числители над общим знаменателем.
Этап 2.1.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.1.6.1
Умножим на .
Этап 2.1.6.2
Вычтем из .
Этап 2.1.7
Вынесем знак минуса перед дробью.
Этап 2.1.8
Объединим и .
Этап 2.1.9
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 2.1.10
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1.10.1
Применим свойство дистрибутивности.
Этап 2.1.10.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 2.1.10.2.1
Объединим и .
Этап 2.1.10.2.2
Перенесем в числитель, используя правило отрицательных степеней .
Этап 2.1.10.2.3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.1.10.2.3.1
Умножим на .
Нажмите для увеличения количества этапов...
Этап 2.1.10.2.3.1.1
Возведем в степень .
Этап 2.1.10.2.3.1.2
Применим правило степени для объединения показателей.
Этап 2.1.10.2.3.2
Запишем в виде дроби с общим знаменателем.
Этап 2.1.10.2.3.3
Объединим числители над общим знаменателем.
Этап 2.1.10.2.3.4
Вычтем из .
Этап 2.1.10.2.4
Объединим и .
Этап 2.1.10.2.5
Вынесем знак минуса перед дробью.
Этап 2.1.10.2.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.1.10.2.7
Объединим и .
Этап 2.1.10.2.8
Объединим числители над общим знаменателем.
Этап 2.1.10.2.9
Перенесем влево от .
Этап 2.1.10.2.10
Добавим и .
Этап 2.2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.2.1
По правилу суммы производная по имеет вид .
Этап 2.2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.2.2.4
Объединим и .
Этап 2.2.2.5
Объединим числители над общим знаменателем.
Этап 2.2.2.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.2.2.6.1
Умножим на .
Этап 2.2.2.6.2
Вычтем из .
Этап 2.2.2.7
Вынесем знак минуса перед дробью.
Этап 2.2.2.8
Объединим и .
Этап 2.2.2.9
Умножим на .
Этап 2.2.2.10
Умножим на .
Этап 2.2.2.11
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 2.2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.3.2
Перепишем в виде .
Этап 2.2.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.2.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3.3.3
Заменим все вхождения на .
Этап 2.2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3.5
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.3.5.1
Применим правило степени и перемножим показатели, .
Этап 2.2.3.5.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.2.3.5.2.1
Объединим и .
Этап 2.2.3.5.2.2
Умножим на .
Этап 2.2.3.5.3
Вынесем знак минуса перед дробью.
Этап 2.2.3.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.2.3.7
Объединим и .
Этап 2.2.3.8
Объединим числители над общим знаменателем.
Этап 2.2.3.9
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.2.3.9.1
Умножим на .
Этап 2.2.3.9.2
Вычтем из .
Этап 2.2.3.10
Вынесем знак минуса перед дробью.
Этап 2.2.3.11
Объединим и .
Этап 2.2.3.12
Объединим и .
Этап 2.2.3.13
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.2.3.13.1
Перенесем .
Этап 2.2.3.13.2
Применим правило степени для объединения показателей.
Этап 2.2.3.13.3
Объединим числители над общим знаменателем.
Этап 2.2.3.13.4
Вычтем из .
Этап 2.2.3.13.5
Вынесем знак минуса перед дробью.
Этап 2.2.3.14
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 2.2.3.15
Умножим на .
Этап 2.2.3.16
Умножим на .
Этап 2.2.3.17
Умножим на .
Этап 2.2.3.18
Умножим на .
Этап 2.2.3.19
Умножим на .
Этап 2.3
Вторая производная по равна .
Этап 3
Приравняем вторую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть вторая производная равна .
Этап 3.2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 3.2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Этап 3.2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 3.2.4
У есть множители: и .
Этап 3.2.5
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 3.2.6
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3.2.7
Умножим на .
Этап 3.2.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3.2.9
НОК представляет собой произведение числовой части и переменной части.
Этап 3.3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Умножим каждый член на .
Этап 3.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.2.1
Сократим общий множитель.
Этап 3.3.2.1.2.2
Перепишем это выражение.
Этап 3.3.2.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.3.1
Вынесем множитель из .
Этап 3.3.2.1.3.2
Сократим общий множитель.
Этап 3.3.2.1.3.3
Перепишем это выражение.
Этап 3.3.2.1.4
Разделим на .
Этап 3.3.2.1.5
Упростим.
Этап 3.3.2.1.6
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.2.1.7
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.7.1
Сократим общий множитель.
Этап 3.3.2.1.7.2
Перепишем это выражение.
Этап 3.3.2.1.8
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.8.1
Сократим общий множитель.
Этап 3.3.2.1.8.2
Перепишем это выражение.
Этап 3.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.3.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.3.3.1.1
Умножим на .
Этап 3.3.3.1.2
Умножим на .
Этап 3.4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Вычтем из обеих частей уравнения.
Этап 3.4.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Разделим каждый член на .
Этап 3.4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.1.1
Сократим общий множитель.
Этап 3.4.2.2.1.2
Разделим на .
Этап 3.4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.2.3.1
Разделим на .
Этап 4
Найдем точки, в которых вторая производная равна .
Нажмите для увеличения количества этапов...
Этап 4.1
Подставим в , чтобы найти значение .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Заменим в этом выражении переменную на .
Этап 4.1.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Вычтем из .
Этап 4.1.2.2
Перенесем влево от .
Этап 4.1.2.3
Окончательный ответ: .
Этап 4.2
Подставляя в , найдем точку . Эта точка может быть точкой перегиба.
Этап 5
Разобьем на интервалы вокруг точек, которые могут быть точками перегиба.
Этап 6
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6.2.2
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Умножим на .
Этап 6.2.2.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.1
Перенесем .
Этап 6.2.2.2.2
Применим правило степени для объединения показателей.
Этап 6.2.2.2.3
Объединим числители над общим знаменателем.
Этап 6.2.2.2.4
Добавим и .
Этап 6.2.3
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 6.2.3.1
Объединим числители над общим знаменателем.
Этап 6.2.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.3.2.1
Сократим общий множитель.
Этап 6.2.3.2.2
Перепишем это выражение.
Этап 6.2.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.2.4.1
Найдем экспоненту.
Этап 6.2.4.2
Умножим на .
Этап 6.2.4.3
Добавим и .
Этап 6.2.5
Вынесем знак минуса перед дробью.
Этап 6.2.6
Окончательный ответ: .
Этап 6.3
При вторая производная имеет вид . Поскольку это положительная величина, вторая производная возрастает на интервале .
Возрастание в области , так как
Возрастание в области , так как
Этап 7
Подставим значение из интервала во вторую производную, чтобы определить, возрастает она или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 7.2.2
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Умножим на .
Этап 7.2.2.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 7.2.2.2.1
Перенесем .
Этап 7.2.2.2.2
Применим правило степени для объединения показателей.
Этап 7.2.2.2.3
Объединим числители над общим знаменателем.
Этап 7.2.2.2.4
Добавим и .
Этап 7.2.3
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 7.2.3.1
Объединим числители над общим знаменателем.
Этап 7.2.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.3.2.1
Сократим общий множитель.
Этап 7.2.3.2.2
Перепишем это выражение.
Этап 7.2.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.2.4.1
Найдем экспоненту.
Этап 7.2.4.2
Умножим на .
Этап 7.2.4.3
Добавим и .
Этап 7.2.5
Окончательный ответ: .
Этап 7.3
При вторая производная имеет вид . Поскольку это отрицательная величина, вторая производная уменьшается на интервале .
Убывание на , так как
Убывание на , так как
Этап 8
Точка перегиба — это точка на кривой, в которой вогнутость меняет знак с плюса на минус или с минуса на плюс. В этом случае точкой перегиба является точка .
Этап 9