Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 1.2
Решим относительно .
Этап 1.2.1
Преобразуем неравенство в уравнение.
Этап 1.2.2
Разложим на множители методом группировки
Этап 1.2.2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 1.2.2.1.1
Вынесем множитель из .
Этап 1.2.2.1.2
Запишем как плюс
Этап 1.2.2.1.3
Применим свойство дистрибутивности.
Этап 1.2.2.1.4
Умножим на .
Этап 1.2.2.2
Вынесем наибольший общий делитель из каждой группы.
Этап 1.2.2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 1.2.2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 1.2.2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к , затем решим относительно .
Этап 1.2.4.1
Приравняем к .
Этап 1.2.4.2
Решим относительно .
Этап 1.2.4.2.1
Вычтем из обеих частей уравнения.
Этап 1.2.4.2.2
Разделим каждый член на и упростим.
Этап 1.2.4.2.2.1
Разделим каждый член на .
Этап 1.2.4.2.2.2
Упростим левую часть.
Этап 1.2.4.2.2.2.1
Сократим общий множитель .
Этап 1.2.4.2.2.2.1.1
Сократим общий множитель.
Этап 1.2.4.2.2.2.1.2
Разделим на .
Этап 1.2.4.2.2.3
Упростим правую часть.
Этап 1.2.4.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 1.2.5
Приравняем к , затем решим относительно .
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Добавим к обеим частям уравнения.
Этап 1.2.6
Окончательным решением являются все значения, при которых верно.
Этап 1.2.7
Используем каждый корень для создания контрольных интервалов.
Этап 1.2.8
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Этап 1.2.8.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 1.2.8.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 1.2.8.1.2
Заменим на в исходном неравенстве.
Этап 1.2.8.1.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 1.2.8.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 1.2.8.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 1.2.8.2.2
Заменим на в исходном неравенстве.
Этап 1.2.8.2.3
Левая часть меньше правой части , значит, данное утверждение ложно.
False
False
Этап 1.2.8.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 1.2.8.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 1.2.8.3.2
Заменим на в исходном неравенстве.
Этап 1.2.8.3.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 1.2.8.4
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Истина
Ложь
Истина
Этап 1.2.9
Решение состоит из всех истинных интервалов.
или
или
Этап 1.3
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Этап 2
Поскольку область определения — это не все вещественные числа, не является непрерывной на множестве всех вещественных чисел.
Не является непрерывной
Этап 3