Математический анализ Примеры

Найти интервалы убывания и возрастания с помощью производных y=x^3-8x^2-12x+6
Этап 1
Запишем в виде функции.
Этап 2
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.2.3
Умножим на .
Этап 2.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.3.3
Умножим на .
Этап 2.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.4.2
Добавим и .
Этап 2.2
Первая производная по равна .
Этап 3
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть первая производная равна .
Этап 3.2
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 3.2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Вынесем множитель из .
Этап 3.2.1.2
Запишем как плюс
Этап 3.2.1.3
Применим свойство дистрибутивности.
Этап 3.2.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Приравняем к .
Этап 3.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Вычтем из обеих частей уравнения.
Этап 3.4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.1
Разделим каждый член на .
Этап 3.4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.2.1.1
Сократим общий множитель.
Этап 3.4.2.2.2.1.2
Разделим на .
Этап 3.4.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 3.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Приравняем к .
Этап 3.5.2
Добавим к обеим частям уравнения.
Этап 3.6
Окончательным решением являются все значения, при которых верно.
Этап 4
Значения, при которых производная равна : .
Этап 5
Разобьем на отдельные интервалы вокруг значений , при которых производная равна или не определена.
Этап 6
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Умножим на .
Этап 6.2.1.3
Умножим на .
Этап 6.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Добавим и .
Этап 6.2.2.2
Вычтем из .
Этап 6.2.3
Окончательный ответ: .
Этап 6.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 7
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 7.1
Заменим в этом выражении переменную на .
Этап 7.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Возведем в степень .
Этап 7.2.1.2
Умножим на .
Этап 7.2.1.3
Умножим на .
Этап 7.2.2
Упростим путем вычитания чисел.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Вычтем из .
Этап 7.2.2.2
Вычтем из .
Этап 7.2.3
Окончательный ответ: .
Этап 7.3
При производная имеет вид . Поскольку это отрицательная величина, функция убывает в диапазоне .
Убывание на , так как
Убывание на , так как
Этап 8
Подставим значение из интервала в производную, чтобы определить, возрастает функция или убывает.
Нажмите для увеличения количества этапов...
Этап 8.1
Заменим в этом выражении переменную на .
Этап 8.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Возведем в степень .
Этап 8.2.1.2
Умножим на .
Этап 8.2.1.3
Умножим на .
Этап 8.2.2
Упростим путем вычитания чисел.
Нажмите для увеличения количества этапов...
Этап 8.2.2.1
Вычтем из .
Этап 8.2.2.2
Вычтем из .
Этап 8.2.3
Окончательный ответ: .
Этап 8.3
При производная имеет вид . Поскольку это положительная величина, функция возрастает в диапазоне .
Возрастание в области , так как
Возрастание в области , так как
Этап 9
Перечислим интервалы, на которых функция возрастает и убывает.
Возрастание в области:
Убывание на:
Этап 10