Математический анализ Примеры

Проверить дифференцируемость функции на интервале f(x)=x^2+2x , (0,6)
,
Этап 1
Найдем производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.2.3
Умножим на .
Этап 1.2
Первая производная по равна .
Этап 2
Выясним, является ли производная непрерывной на .
Нажмите для увеличения количества этапов...
Этап 2.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 2.2
 — непрерывное выражение в области .
Функция является непрерывной.
Функция является непрерывной.
Этап 3
Функция является дифференцируемой на , поскольку производная является непрерывной на .
Функция является дифференцируемой.
Этап 4