Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Продифференцируем.
Этап 1.1.2.1
По правилу суммы производная по имеет вид .
Этап 1.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.4
Добавим и .
Этап 1.2
Подставим нижнее предельное значение вместо в .
Этап 1.3
Упростим.
Этап 1.3.1
Любое число в степени равно .
Этап 1.3.2
Добавим и .
Этап 1.4
Подставим верхнее предельное значение вместо в .
Этап 1.5
Упростим.
Этап 1.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 1.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 2
Интеграл по имеет вид .
Этап 3
Найдем значение в и в .
Этап 4
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 5
Этап 5.1
приблизительно равно . Это положительное число, поэтому вычтем абсолютное значение.
Этап 5.2
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 7