Введите задачу...
Математический анализ Примеры
Этап 1
Внесем предел под знак радикала.
Этап 2
Этап 2.1
Найдем предел числителя и предел знаменателя.
Этап 2.1.1
Возьмем предел числителя и предел знаменателя.
Этап 2.1.2
Найдем предел числителя.
Этап 2.1.2.1
Вычислим предел.
Этап 2.1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.2.1.2
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.1.2.1.3
Найдем предел , который является константой по мере приближения к .
Этап 2.1.2.2
Найдем предел , подставив значение для .
Этап 2.1.2.3
Упростим ответ.
Этап 2.1.2.3.1
Упростим каждый член.
Этап 2.1.2.3.1.1
Возведем в степень .
Этап 2.1.2.3.1.2
Умножим на .
Этап 2.1.2.3.2
Вычтем из .
Этап 2.1.3
Найдем предел знаменателя.
Этап 2.1.3.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.1.3.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.1.3.3
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.1.3.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 2.1.3.5
Найдем предел , который является константой по мере приближения к .
Этап 2.1.3.6
Найдем значения пределов, подставив значение для всех вхождений .
Этап 2.1.3.6.1
Найдем предел , подставив значение для .
Этап 2.1.3.6.2
Найдем предел , подставив значение для .
Этап 2.1.3.7
Упростим ответ.
Этап 2.1.3.7.1
Упростим каждый член.
Этап 2.1.3.7.1.1
Возведем в степень .
Этап 2.1.3.7.1.2
Умножим на .
Этап 2.1.3.7.1.3
Умножим на .
Этап 2.1.3.7.2
Вычтем из .
Этап 2.1.3.7.3
Добавим и .
Этап 2.1.3.7.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.1.3.8
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 2.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 2.3
Найдем производную числителя и знаменателя.
Этап 2.3.1
Продифференцируем числитель и знаменатель.
Этап 2.3.2
По правилу суммы производная по имеет вид .
Этап 2.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.5
Добавим и .
Этап 2.3.6
По правилу суммы производная по имеет вид .
Этап 2.3.7
Найдем значение .
Этап 2.3.7.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.7.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.7.3
Умножим на .
Этап 2.3.8
Найдем значение .
Этап 2.3.8.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.8.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.8.3
Умножим на .
Этап 2.3.9
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.10
Добавим и .
Этап 3
Этап 3.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.2
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 3.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 3.4
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3.5
Найдем предел , который является константой по мере приближения к .
Этап 4
Этап 4.1
Найдем предел , подставив значение для .
Этап 4.2
Найдем предел , подставив значение для .
Этап 5
Этап 5.1
Объединим и .
Этап 5.2
Умножим на .
Этап 5.3
Добавим и .
Этап 5.4
Умножим на .
Этап 5.5
Деление двух отрицательных значений дает положительное значение.
Этап 5.6
Перепишем в виде .
Этап 5.7
Умножим на .
Этап 5.8
Объединим и упростим знаменатель.
Этап 5.8.1
Умножим на .
Этап 5.8.2
Возведем в степень .
Этап 5.8.3
Возведем в степень .
Этап 5.8.4
Применим правило степени для объединения показателей.
Этап 5.8.5
Добавим и .
Этап 5.8.6
Перепишем в виде .
Этап 5.8.6.1
С помощью запишем в виде .
Этап 5.8.6.2
Применим правило степени и перемножим показатели, .
Этап 5.8.6.3
Объединим и .
Этап 5.8.6.4
Сократим общий множитель .
Этап 5.8.6.4.1
Сократим общий множитель.
Этап 5.8.6.4.2
Перепишем это выражение.
Этап 5.8.6.5
Найдем экспоненту.
Этап 5.9
Упростим числитель.
Этап 5.9.1
Объединим, используя правило умножения для радикалов.
Этап 5.9.2
Умножим на .
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: