Математический анализ Примеры

Вычислим интеграл интеграл (1+cos(7t))^2sin(7t) в пределах от 0 до pi по t
Этап 1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
По правилу суммы производная по имеет вид .
Этап 1.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.3.1.2
Производная по равна .
Этап 1.1.3.1.3
Заменим все вхождения на .
Этап 1.1.3.2
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.4
Умножим на .
Этап 1.1.3.5
Умножим на .
Этап 1.1.4
Вычтем из .
Этап 1.2
Подставим нижнее предельное значение вместо в .
Этап 1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Умножим на .
Этап 1.3.1.2
Точное значение : .
Этап 1.3.2
Добавим и .
Этап 1.4
Подставим верхнее предельное значение вместо в .
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.5.1.1
Удалим число полных оборотов , чтобы угол оказался больше или равен и меньше .
Этап 1.5.1.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как косинус отрицательный во втором квадранте.
Этап 1.5.1.3
Точное значение : .
Этап 1.5.1.4
Умножим на .
Этап 1.5.2
Вычтем из .
Этап 1.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 1.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем знак минуса перед дробью.
Этап 2.2
Объединим и .
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
По правилу степени интеграл по имеет вид .
Этап 6
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Найдем значение в и в .
Этап 6.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Возведение в любую положительную степень дает .
Этап 6.2.2
Умножим на .
Этап 6.2.3
Возведем в степень .
Этап 6.2.4
Умножим на .
Этап 6.2.5
Объединим и .
Этап 6.2.6
Вынесем знак минуса перед дробью.
Этап 6.2.7
Вычтем из .
Этап 6.2.8
Умножим на .
Этап 6.2.9
Умножим на .
Этап 6.2.10
Умножим на .
Этап 6.2.11
Умножим на .
Этап 7
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: