Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Этап 2.1
Пусть . Найдем .
Этап 2.1.1
Дифференцируем .
Этап 2.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.1.2.3
Заменим все вхождения на .
Этап 2.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.4
Упростим.
Этап 2.1.4.1
Изменим порядок множителей в .
Этап 2.1.4.2
Изменим порядок множителей в .
Этап 2.2
Подставим нижнее предельное значение вместо в .
Этап 2.3
Упростим.
Этап 2.3.1
Возведение в любую положительную степень дает .
Этап 2.3.2
Любое число в степени равно .
Этап 2.4
Подставим верхнее предельное значение вместо в .
Этап 2.5
Упростим.
Этап 2.5.1
Единица в любой степени равна единице.
Этап 2.5.2
Упростим.
Этап 2.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 2.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 3
Применим правило дифференцирования постоянных функций.
Этап 4
Этап 4.1
Объединим и .
Этап 4.2
Найдем значение в и в .
Этап 5
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Сократим общий множитель .
Этап 5.2.1
Сократим общий множитель.
Этап 5.2.2
Перепишем это выражение.
Этап 5.3
Сократим общий множитель .
Этап 5.3.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 5.3.2
Сократим общий множитель.
Этап 5.3.3
Перепишем это выражение.
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 7