Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Продифференцируем.
Этап 1.1.2.1
По правилу суммы производная по имеет вид .
Этап 1.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3
Найдем значение .
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Умножим на .
Этап 1.1.4
Вычтем из .
Этап 1.2
Подставим нижнее предельное значение вместо в .
Этап 1.3
Упростим.
Этап 1.3.1
Упростим каждый член.
Этап 1.3.1.1
Разделим на .
Этап 1.3.1.2
Умножим на .
Этап 1.3.2
Добавим и .
Этап 1.4
Подставим верхнее предельное значение вместо в .
Этап 1.5
Упростим.
Этап 1.5.1
Упростим каждый член.
Этап 1.5.1.1
Сократим общий множитель .
Этап 1.5.1.1.1
Сократим общий множитель.
Этап 1.5.1.1.2
Перепишем это выражение.
Этап 1.5.1.2
Умножим на .
Этап 1.5.2
Вычтем из .
Этап 1.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 1.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 2
Этап 2.1
Деление двух отрицательных значений дает положительное значение.
Этап 2.2
Умножим на обратную дробь, чтобы разделить на .
Этап 2.3
Умножим на .
Этап 2.4
Умножим на .
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Умножим на .
Этап 5
По правилу степени интеграл по имеет вид .
Этап 6
Объединим и .
Этап 7
Этап 7.1
Найдем значение в и в .
Этап 7.2
Упростим.
Этап 7.2.1
Возведение в любую положительную степень дает .
Этап 7.2.2
Сократим общий множитель и .
Этап 7.2.2.1
Вынесем множитель из .
Этап 7.2.2.2
Сократим общие множители.
Этап 7.2.2.2.1
Вынесем множитель из .
Этап 7.2.2.2.2
Сократим общий множитель.
Этап 7.2.2.2.3
Перепишем это выражение.
Этап 7.2.2.2.4
Разделим на .
Этап 7.2.3
Единица в любой степени равна единице.
Этап 7.2.4
Вычтем из .
Этап 7.2.5
Умножим на .
Этап 7.2.6
Объединим и .
Этап 7.2.7
Объединим и .
Этап 7.2.8
Перенесем влево от .
Этап 8
Изменим порядок членов.
Этап 9
Объединим и .
Этап 10