Математический анализ Примеры

Вычислим интеграл интеграл xsin(1/6x) по x
Этап 1
Проинтегрируем по частям, используя формулу , где и .
Этап 2
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Объединим и .
Этап 3.2
Объединим и .
Этап 3.3
Умножим на .
Этап 4
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 4.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Дифференцируем .
Этап 4.1.2
Поскольку является константой относительно , производная по равна .
Этап 4.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.4
Умножим на .
Этап 4.2
Переформулируем задачу с помощью и .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Умножим на обратную дробь, чтобы разделить на .
Этап 5.2
Умножим на .
Этап 5.3
Перенесем влево от .
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Умножим на .
Этап 8
Интеграл по имеет вид .
Этап 9
Перепишем в виде .
Этап 10
Заменим все вхождения на .
Этап 11
Изменим порядок членов.