Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Перепишем в виде .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.2
Переформулируем задачу с помощью и .
Этап 2
Этап 2.1
Вынесем знак минуса перед дробью.
Этап 2.2
Умножим на обратную дробь, чтобы разделить на .
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Проинтегрируем по частям, используя формулу , где и .
Этап 5
Интеграл по имеет вид .
Этап 6
Упростим.
Этап 7
Заменим все вхождения на .
Этап 8
Этап 8.1
Объединим и .
Этап 8.2
Применим свойство дистрибутивности.
Этап 8.3
Умножим .
Этап 8.3.1
Умножим на .
Этап 8.3.2
Умножим на .