Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Проинтегрируем по частям, используя формулу , где и .
Этап 3
Этап 3.1
Объединим и .
Этап 3.2
Объединим и .
Этап 3.3
Объединим и .
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Этап 5.1
Умножим на .
Этап 5.2
Умножим на .
Этап 6
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Этап 7.1
Пусть . Найдем .
Этап 7.1.1
Дифференцируем .
Этап 7.1.2
Поскольку является константой относительно , производная по равна .
Этап 7.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7.1.4
Умножим на .
Этап 7.2
Переформулируем задачу с помощью и .
Этап 8
Этап 8.1
Вынесем знак минуса перед дробью.
Этап 8.2
Объединим и .
Этап 9
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
Этап 11.1
Умножим на .
Этап 11.2
Умножим на .
Этап 12
Интеграл по имеет вид .
Этап 13
Этап 13.1
Перепишем в виде .
Этап 13.2
Упростим.
Этап 13.2.1
Объединим и .
Этап 13.2.2
Объединим и .
Этап 13.2.3
Объединим и .
Этап 14
Заменим все вхождения на .
Этап 15
Изменим порядок членов.