Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Этап 2.1
Пусть . Найдем .
Этап 2.1.1
Дифференцируем .
Этап 2.1.2
Производная по равна .
Этап 2.2
Переформулируем задачу с помощью и .
Этап 3
По правилу степени интеграл по имеет вид .
Этап 4
Этап 4.1
Перепишем в виде .
Этап 4.2
Упростим.
Этап 4.2.1
Объединим и .
Этап 4.2.2
Сократим общий множитель .
Этап 4.2.2.1
Сократим общий множитель.
Этап 4.2.2.2
Перепишем это выражение.
Этап 4.2.3
Умножим на .
Этап 5
Заменим все вхождения на .