Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Вынесем множитель из .
Этап 1.2
Вынесем множитель из .
Этап 1.3
Вынесем множитель из .
Этап 2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 3
Этап 3.1
Пусть . Найдем .
Этап 3.1.1
Дифференцируем .
Этап 3.1.2
По правилу суммы производная по имеет вид .
Этап 3.1.3
Найдем значение .
Этап 3.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.3.3
Умножим на .
Этап 3.1.4
Найдем значение .
Этап 3.1.4.1
Поскольку является константой относительно , производная по равна .
Этап 3.1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.4.3
Умножим на .
Этап 3.1.5
Продифференцируем, используя правило константы.
Этап 3.1.5.1
Поскольку является константой относительно , производная относительно равна .
Этап 3.1.5.2
Добавим и .
Этап 3.2
Переформулируем задачу с помощью и .
Этап 4
Этап 4.1
Умножим на .
Этап 4.2
Перенесем влево от .
Этап 5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Этап 6.1
Объединим и .
Этап 6.2
Сократим общий множитель и .
Этап 6.2.1
Вынесем множитель из .
Этап 6.2.2
Сократим общие множители.
Этап 6.2.2.1
Вынесем множитель из .
Этап 6.2.2.2
Сократим общий множитель.
Этап 6.2.2.3
Перепишем это выражение.
Этап 7
Интеграл по имеет вид .
Этап 8
Упростим.
Этап 9
Заменим все вхождения на .