Введите задачу...
Математический анализ Примеры
Этап 1
Пусть , где . Тогда . Заметим, что поскольку , выражение положительно.
Этап 2
Этап 2.1
Упростим .
Этап 2.1.1
Применим формулу Пифагора.
Этап 2.1.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.2
Сократим общий множитель .
Этап 2.2.1
Сократим общий множитель.
Этап 2.2.2
Перепишем это выражение.
Этап 3
Разделим данный интеграл на несколько интегралов.
Этап 4
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Интеграл по имеет вид .
Этап 6
Применим правило дифференцирования постоянных функций.
Этап 7
Упростим.
Этап 8
Заменим все вхождения на .