Математический анализ Примеры

Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.2
Производная по равна .
Этап 1.3
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.2
Изменим порядок членов.
Этап 2
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2.2
Производная по равна .
Этап 2.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.3.3
Производная по равна .
Этап 2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.5
Умножим на .
Этап 2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Применим свойство дистрибутивности.
Этап 2.4.2
Добавим и .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Перенесем .
Этап 2.4.2.2
Добавим и .
Этап 2.4.3
Изменим порядок членов.
Этап 3
Найдем третью производную.
Нажмите для увеличения количества этапов...
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.2.3
Производная по равна .
Этап 3.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.3.3
Производная по равна .
Этап 3.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.5
Умножим на .
Этап 3.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Поскольку является константой относительно , производная по равна .
Этап 3.4.2
Производная по равна .
Этап 3.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Применим свойство дистрибутивности.
Этап 3.5.2
Применим свойство дистрибутивности.
Этап 3.5.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 3.5.3.1
Умножим на .
Этап 3.5.3.2
Умножим на .
Этап 3.5.3.3
Вычтем из .
Нажмите для увеличения количества этапов...
Этап 3.5.3.3.1
Перенесем .
Этап 3.5.3.3.2
Вычтем из .
Этап 3.5.3.4
Добавим и .
Этап 4
Найдем четвертую производную.
Нажмите для увеличения количества этапов...
Этап 4.1
По правилу суммы производная по имеет вид .
Этап 4.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Поскольку является константой относительно , производная по равна .
Этап 4.2.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 4.2.3
Производная по равна .
Этап 4.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.3.2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 4.3.3
Производная по равна .
Этап 4.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.5
Умножим на .
Этап 4.4
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 4.4.1
Поскольку является константой относительно , производная по равна .
Этап 4.4.2
Производная по равна .
Этап 4.4.3
Умножим на .
Этап 4.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.5.1
Применим свойство дистрибутивности.
Этап 4.5.2
Применим свойство дистрибутивности.
Этап 4.5.3
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 4.5.3.1
Умножим на .
Этап 4.5.3.2
Умножим на .
Этап 4.5.3.3
Умножим на .
Этап 4.5.3.4
Вычтем из .
Нажмите для увеличения количества этапов...
Этап 4.5.3.4.1
Перенесем .
Этап 4.5.3.4.2
Вычтем из .
Этап 4.5.3.5
Вычтем из .
Этап 5
Четвертая производная по равна .