Математический анализ Примеры

Вычислим интеграл интеграл 2/(x-4)-3/(2x+1) по x
Этап 1
Разделим данный интеграл на несколько интегралов.
Этап 2
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 3
Пусть . Тогда . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 3.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Дифференцируем .
Этап 3.1.2
По правилу суммы производная по имеет вид .
Этап 3.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.1.5
Добавим и .
Этап 3.2
Переформулируем задачу с помощью и .
Этап 4
Интеграл по имеет вид .
Этап 5
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Умножим на .
Этап 8
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 8.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 8.1.1
Дифференцируем .
Этап 8.1.2
По правилу суммы производная по имеет вид .
Этап 8.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 8.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 8.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8.1.3.3
Умножим на .
Этап 8.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 8.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 8.1.4.2
Добавим и .
Этап 8.2
Переформулируем задачу с помощью и .
Этап 9
Упростим.
Нажмите для увеличения количества этапов...
Этап 9.1
Умножим на .
Этап 9.2
Перенесем влево от .
Этап 10
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
Упростим.
Нажмите для увеличения количества этапов...
Этап 11.1
Объединим и .
Этап 11.2
Вынесем знак минуса перед дробью.
Этап 12
Интеграл по имеет вид .
Этап 13
Упростим.
Этап 14
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Нажмите для увеличения количества этапов...
Этап 14.1
Заменим все вхождения на .
Этап 14.2
Заменим все вхождения на .