Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Этап 1.2.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2.3
Объединим и .
Этап 1.2.4
Объединим числители над общим знаменателем.
Этап 1.2.5
Упростим числитель.
Этап 1.2.5.1
Умножим на .
Этап 1.2.5.2
Вычтем из .
Этап 1.3
Найдем значение .
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.3.4
Объединим и .
Этап 1.3.5
Объединим числители над общим знаменателем.
Этап 1.3.6
Упростим числитель.
Этап 1.3.6.1
Умножим на .
Этап 1.3.6.2
Вычтем из .
Этап 1.3.7
Объединим и .
Этап 1.3.8
Объединим и .
Этап 1.3.9
Умножим на .
Этап 1.3.10
Вынесем знак минуса перед дробью.
Этап 1.4
Объединим и .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.2.4
Объединим и .
Этап 2.2.5
Объединим числители над общим знаменателем.
Этап 2.2.6
Упростим числитель.
Этап 2.2.6.1
Умножим на .
Этап 2.2.6.2
Вычтем из .
Этап 2.2.7
Объединим и .
Этап 2.2.8
Умножим на .
Этап 2.2.9
Умножим на .
Этап 2.2.10
Умножим на .
Этап 2.3
Найдем значение .
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3.4
Объединим и .
Этап 2.3.5
Объединим числители над общим знаменателем.
Этап 2.3.6
Упростим числитель.
Этап 2.3.6.1
Умножим на .
Этап 2.3.6.2
Вычтем из .
Этап 2.3.7
Вынесем знак минуса перед дробью.
Этап 2.3.8
Объединим и .
Этап 2.3.9
Умножим на .
Этап 2.3.10
Умножим на .
Этап 2.3.11
Умножим на .
Этап 2.3.12
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.2.4
Объединим и .
Этап 3.2.5
Объединим числители над общим знаменателем.
Этап 3.2.6
Упростим числитель.
Этап 3.2.6.1
Умножим на .
Этап 3.2.6.2
Вычтем из .
Этап 3.2.7
Вынесем знак минуса перед дробью.
Этап 3.2.8
Объединим и .
Этап 3.2.9
Умножим на .
Этап 3.2.10
Умножим на .
Этап 3.2.11
Умножим на .
Этап 3.2.12
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 3.3
Найдем значение .
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Перепишем в виде .
Этап 3.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3.3
Заменим все вхождения на .
Этап 3.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.5
Перемножим экспоненты в .
Этап 3.3.5.1
Применим правило степени и перемножим показатели, .
Этап 3.3.5.2
Объединим и .
Этап 3.3.5.3
Вынесем знак минуса перед дробью.
Этап 3.3.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.3.7
Объединим и .
Этап 3.3.8
Объединим числители над общим знаменателем.
Этап 3.3.9
Упростим числитель.
Этап 3.3.9.1
Умножим на .
Этап 3.3.9.2
Вычтем из .
Этап 3.3.10
Вынесем знак минуса перед дробью.
Этап 3.3.11
Объединим и .
Этап 3.3.12
Объединим и .
Этап 3.3.13
Умножим на , сложив экспоненты.
Этап 3.3.13.1
Применим правило степени для объединения показателей.
Этап 3.3.13.2
Объединим числители над общим знаменателем.
Этап 3.3.13.3
Вычтем из .
Этап 3.3.13.4
Вынесем знак минуса перед дробью.
Этап 3.3.14
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 3.3.15
Умножим на .
Этап 3.3.16
Умножим на .
Этап 3.3.17
Умножим на .
Этап 3.3.18
Умножим на .
Этап 4
Этап 4.1
По правилу суммы производная по имеет вид .
Этап 4.2
Найдем значение .
Этап 4.2.1
Поскольку является константой относительно , производная по равна .
Этап 4.2.2
Перепишем в виде .
Этап 4.2.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 4.2.3.1
Чтобы применить цепное правило, зададим как .
Этап 4.2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.2.3.3
Заменим все вхождения на .
Этап 4.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.2.5
Перемножим экспоненты в .
Этап 4.2.5.1
Применим правило степени и перемножим показатели, .
Этап 4.2.5.2
Объединим и .
Этап 4.2.5.3
Вынесем знак минуса перед дробью.
Этап 4.2.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.2.7
Объединим и .
Этап 4.2.8
Объединим числители над общим знаменателем.
Этап 4.2.9
Упростим числитель.
Этап 4.2.9.1
Умножим на .
Этап 4.2.9.2
Вычтем из .
Этап 4.2.10
Вынесем знак минуса перед дробью.
Этап 4.2.11
Объединим и .
Этап 4.2.12
Объединим и .
Этап 4.2.13
Умножим на , сложив экспоненты.
Этап 4.2.13.1
Применим правило степени для объединения показателей.
Этап 4.2.13.2
Объединим числители над общим знаменателем.
Этап 4.2.13.3
Вычтем из .
Этап 4.2.13.4
Вынесем знак минуса перед дробью.
Этап 4.2.14
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 4.2.15
Умножим на .
Этап 4.2.16
Умножим на .
Этап 4.3
Найдем значение .
Этап 4.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.3.2
Перепишем в виде .
Этап 4.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 4.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 4.3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.3.3
Заменим все вхождения на .
Этап 4.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3.5
Перемножим экспоненты в .
Этап 4.3.5.1
Применим правило степени и перемножим показатели, .
Этап 4.3.5.2
Умножим .
Этап 4.3.5.2.1
Объединим и .
Этап 4.3.5.2.2
Умножим на .
Этап 4.3.5.3
Вынесем знак минуса перед дробью.
Этап 4.3.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.3.7
Объединим и .
Этап 4.3.8
Объединим числители над общим знаменателем.
Этап 4.3.9
Упростим числитель.
Этап 4.3.9.1
Умножим на .
Этап 4.3.9.2
Вычтем из .
Этап 4.3.10
Объединим и .
Этап 4.3.11
Объединим и .
Этап 4.3.12
Умножим на , сложив экспоненты.
Этап 4.3.12.1
Перенесем .
Этап 4.3.12.2
Применим правило степени для объединения показателей.
Этап 4.3.12.3
Объединим числители над общим знаменателем.
Этап 4.3.12.4
Добавим и .
Этап 4.3.12.5
Вынесем знак минуса перед дробью.
Этап 4.3.13
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 4.3.14
Умножим на .
Этап 4.3.15
Умножим на .
Этап 4.3.16
Умножим на .