Математический анализ Примеры

Этап 1
Продифференцируем обе части уравнения.
Этап 2
Продифференцируем левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Перепишем в виде .
Этап 2.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.4
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2.3.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.4
Перепишем в виде .
Этап 2.3.5
Умножим на .
Этап 2.3.6
Умножим на .
Этап 2.3.7
Вычтем из .
Этап 2.3.8
Вынесем знак минуса перед дробью.
Этап 2.3.9
Умножим на .
Этап 2.3.10
Объединим и .
Этап 2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.4.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Объединим и .
Этап 2.4.2.2
Вынесем знак минуса перед дробью.
Этап 2.4.3
Изменим порядок членов.
Этап 3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку является константой относительно , производная по равна .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Умножим на .
Этап 4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Добавим к обеим частям уравнения.
Этап 5.2
Умножим обе части на .
Этап 5.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.1.1.1
Сократим общий множитель.
Этап 5.3.1.1.2
Перепишем это выражение.
Этап 5.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1.1
Применим свойство дистрибутивности.
Этап 5.3.2.1.2
Объединим и .
Этап 5.4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Разделим каждый член на .
Этап 5.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.4.2.1.1
Сократим общий множитель.
Этап 5.4.2.1.2
Разделим на .
Этап 5.4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.4.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.4.3.1.1
Умножим числитель на величину, обратную знаменателю.
Этап 5.4.3.1.2
Объединим.
Этап 5.4.3.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.4.3.1.3.1
Сократим общий множитель.
Этап 5.4.3.1.3.2
Перепишем это выражение.
Этап 5.4.3.1.4
Умножим на .
Этап 6
Заменим на .