Математический анализ Примеры

Trovare la Derivata - d/d@VAR f(t)=e^(4tsin(2t))
Этап 1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.3
Заменим все вхождения на .
Этап 2
Продифференцируем, используя правило умножения на константу.
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Перенесем влево от .
Этап 3
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 4
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 4.1
Чтобы применить цепное правило, зададим как .
Этап 4.2
Производная по равна .
Этап 4.3
Заменим все вхождения на .
Этап 5
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 5.1
Поскольку является константой относительно , производная по равна .
Этап 5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Умножим на .
Этап 5.3.2
Перенесем влево от .
Этап 5.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.5
Умножим на .
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Применим свойство дистрибутивности.
Этап 6.2
Умножим на .