Математический анализ Примеры

Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 3.1
Чтобы применить цепное правило, зададим как .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Заменим все вхождения на .
Этап 4
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 4.1
По правилу суммы производная по имеет вид .
Этап 4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.3
Поскольку является константой относительно , производная относительно равна .
Этап 4.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.4.1
Добавим и .
Этап 4.4.2
Умножим на .
Этап 5
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 5.1
Перенесем .
Этап 5.2
Применим правило степени для объединения показателей.
Этап 5.3
Добавим и .
Этап 6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 7
Перенесем влево от .
Этап 8
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Применим свойство дистрибутивности.
Этап 8.2
Умножим на .
Этап 8.3
Умножим на .
Этап 8.4
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 8.4.1
Вынесем множитель из .
Этап 8.4.2
Вынесем множитель из .
Этап 8.4.3
Вынесем множитель из .